open-mmlab/mmdetection3d
Fork: 1348 Star: 4280 (更新于 1970-01-01 00:00:00)
license: Apache-2.0
Language: Python .
OpenMMLab's next-generation platform for general 3D object detection.
最后发布版本: v1.3.0 ( 2023-10-19 15:42:13)
📘Documentation | 🛠️Installation | 👀Model Zoo | 🆕Update News | 🚀Ongoing Projects | 🤔Reporting Issues
English | 简体中文
Introduction
MMDetection3D is an open source object detection toolbox based on PyTorch, towards the next-generation platform for general 3D detection. It is a part of the OpenMMLab project.
The main branch works with PyTorch 1.8+.
Major features
-
Support multi-modality/single-modality detectors out of box
It directly supports multi-modality/single-modality detectors including MVXNet, VoteNet, PointPillars, etc.
-
Support indoor/outdoor 3D detection out of box
It directly supports popular indoor and outdoor 3D detection datasets, including ScanNet, SUNRGB-D, Waymo, nuScenes, Lyft, and KITTI. For nuScenes dataset, we also support nuImages dataset.
-
Natural integration with 2D detection
All the about 300+ models, methods of 40+ papers, and modules supported in MMDetection can be trained or used in this codebase.
-
High efficiency
It trains faster than other codebases. The main results are as below. Details can be found in benchmark.md. We compare the number of samples trained per second (the higher, the better). The models that are not supported by other codebases are marked by
✗
.Methods MMDetection3D OpenPCDet votenet Det3D VoteNet 358 ✗ 77 ✗ PointPillars-car 141 ✗ ✗ 140 PointPillars-3class 107 44 ✗ ✗ SECOND 40 30 ✗ ✗ Part-A2 17 14 ✗ ✗
Like MMDetection and MMCV, MMDetection3D can also be used as a library to support different projects on top of it.
What's New
Highlight
We have renamed the branch 1.1
to main
and switched the default branch from master
to main
. We encourage users to migrate to the latest version, though it comes with some cost. Please refer to Migration Guide for more details.
We have constructed a comprehensive LiDAR semantic segmentation benchmark on SemanticKITTI, including Cylinder3D, MinkUNet and SPVCNN methods. Noteworthy, the improved MinkUNetv2 can achieve 70.3 mIoU on the validation set of SemanticKITTI. We have also supported the training of BEVFusion and an occupancy prediction method, TPVFomrer, in our projects
. More new features about 3D perception are on the way. Please stay tuned!
v1.3.0 was released in 18/10/2023:
- Support CENet in
projects
- Enhance demos with new 3D inferencers
v1.2.0 was released in 4/7/2023
- Support New Config Type in
mmdet3d/configs
- Support the inference of DSVT in
projects
- Support downloading datasets from OpenDataLab using
mim
v1.1.1 was released in 30/5/2023:
- Support TPVFormer in
projects
- Support the training of BEVFusion in
projects
- Support lidar-based 3D semantic segmentation benchmark
Installation
Please refer to Installation for installation instructions.
Getting Started
For detailed user guides and advanced guides, please refer to our documentation:
User Guides
Advanced Guides
Overview of Benchmark and Model Zoo
Results and models are available in the model zoo.
Backbones | Heads | Features |
|
LiDAR-based 3D Object Detection | Camera-based 3D Object Detection | Multi-modal 3D Object Detection | 3D Semantic Segmentation |
|
|
|
|
ResNet | VoVNet | Swin-T | PointNet++ | SECOND | DGCNN | RegNetX | DLA | MinkResNet | Cylinder3D | MinkUNet | |
---|---|---|---|---|---|---|---|---|---|---|---|
SECOND | ✗ | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ |
PointPillars | ✗ | ✗ | ✗ | ✗ | ✓ | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ |
FreeAnchor | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ |
VoteNet | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ |
H3DNet | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ |
3DSSD | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ |
Part-A2 | ✗ | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ |
MVXNet | ✓ | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ |
CenterPoint | ✗ | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ |
SSN | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ |
ImVoteNet | ✓ | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ |
FCOS3D | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ |
PointNet++ | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ |
Group-Free-3D | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ |
ImVoxelNet | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ |
PAConv | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ |
DGCNN | ✗ | ✗ | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ |
SMOKE | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ |
PGD | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ |
MonoFlex | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ |
SA-SSD | ✗ | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ |
FCAF3D | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ |
PV-RCNN | ✗ | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ |
Cylinder3D | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✓ | ✗ |
MinkUNet | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✓ |
SPVCNN | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✓ |
BEVFusion | ✗ | ✗ | ✓ | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ |
CenterFormer | ✗ | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ |
TR3D | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ |
DETR3D | ✓ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ |
PETR | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ |
TPVFormer | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ |
Note: All the about 500+ models, methods of 90+ papers in 2D detection supported by MMDetection can be trained or used in this codebase.
FAQ
Please refer to FAQ for frequently asked questions.
Contributing
We appreciate all contributions to improve MMDetection3D. Please refer to CONTRIBUTING.md for the contributing guideline.
Acknowledgement
MMDetection3D is an open source project that is contributed by researchers and engineers from various colleges and companies. We appreciate all the contributors as well as users who give valuable feedbacks. We wish that the toolbox and benchmark could serve the growing research community by providing a flexible toolkit to reimplement existing methods and develop their own new 3D detectors.
Citation
If you find this project useful in your research, please consider cite:
@misc{mmdet3d2020,
title={{MMDetection3D: OpenMMLab} next-generation platform for general {3D} object detection},
author={MMDetection3D Contributors},
howpublished = {\url{https://github.com/open-mmlab/mmdetection3d}},
year={2020}
}
License
This project is released under the Apache 2.0 license.
Projects in OpenMMLab
- MMEngine: OpenMMLab foundational library for training deep learning models.
- MMCV: OpenMMLab foundational library for computer vision.
- MMEval: A unified evaluation library for multiple machine learning libraries.
- MIM: MIM installs OpenMMLab packages.
- MMPreTrain: OpenMMLab pre-training toolbox and benchmark.
- MMDetection: OpenMMLab detection toolbox and benchmark.
- MMDetection3D: OpenMMLab's next-generation platform for general 3D object detection.
- MMRotate: OpenMMLab rotated object detection toolbox and benchmark.
- MMYOLO: OpenMMLab YOLO series toolbox and benchmark.
- MMSegmentation: OpenMMLab semantic segmentation toolbox and benchmark.
- MMOCR: OpenMMLab text detection, recognition, and understanding toolbox.
- MMPose: OpenMMLab pose estimation toolbox and benchmark.
- MMHuman3D: OpenMMLab 3D human parametric model toolbox and benchmark.
- MMSelfSup: OpenMMLab self-supervised learning toolbox and benchmark.
- MMRazor: OpenMMLab model compression toolbox and benchmark.
- MMFewShot: OpenMMLab fewshot learning toolbox and benchmark.
- MMAction2: OpenMMLab's next-generation action understanding toolbox and benchmark.
- MMTracking: OpenMMLab video perception toolbox and benchmark.
- MMFlow: OpenMMLab optical flow toolbox and benchmark.
- MMagic: OpenMMLab Advanced, Generative and Intelligent Creation toolbox.
- MMGeneration: OpenMMLab image and video generative models toolbox.
- MMDeploy: OpenMMLab model deployment framework.
最近版本更新:(数据更新于 1970-01-01 00:00:00)
2023-10-19 15:42:13 v1.3.0
2023-07-04 23:51:17 v1.2.0
2023-05-31 15:57:04 v1.1.1
2023-04-19 13:57:10 v1.1.0
2023-01-10 11:23:09 v1.1.0rc3
2022-12-16 20:22:07 v1.0.0rc6
2022-12-03 20:59:16 v1.1.0rc2
2022-10-17 19:36:09 v1.1.0rc1
2022-10-17 19:33:18 v1.0.0rc5
2022-09-01 21:27:48 v1.1.0rc0
主题(topics):
3d-object-detection, object-detection, point-cloud, pytorch
open-mmlab/mmdetection3d同语言 Python最近更新仓库
2024-11-05 15:03:24 Cinnamon/kotaemon
2024-11-05 02:49:29 home-assistant/core
2024-11-04 23:11:11 DS4SD/docling
2024-11-04 10:56:18 open-compass/opencompass
2024-11-04 08:51:21 yt-dlp/yt-dlp
2024-11-02 04:45:40 princeton-vl/infinigen