MyGit

deeplycloudy/glmtools

Fork: 34 Star: 63 (更新于 2024-12-21 13:41:12)

license: BSD-3-Clause

Language: Python .

GOES-R Geostationary Lightning Mapper Tools

最后发布版本: v0.5.0 ( 2019-04-23 00:41:16)

GitHub网址

glmtools

GOES Geostationary Lightning Mapper Tools

DOI

Installation

glmtools requires Python 3.5+ and provides a conda environment.yml for the key dependencies.

See the documentation in docs/index.rst for complete installation instructions.

Description

Compatible data:

glmtools automatically reconstitutes the parent-child relationships implicit in the L2 GLM data and adds traversal information to the dataset:

  • calculating the parent flash id for each event
  • calculating the number of groups and events in each flash
  • calculating the number of events in each group

xarray's dimension-aware indexing lets you quickly reduce the dataset to flashes of interest, as described below.

glmtools can restore the GLM event geometry using a built-in corner-point lookup table, which allows for gridding of the imagery at finer resolutions that accurately represent the full footprint of each event, group, and flash.

The methods are described in Bruning et al. (2019):

  • Bruning, E., Tillier, C. E., Edgington, S. F., Rudlosky, S. D., Zajic, J., Gravelle, C., et al. (2019). Meteorological imagery for the Geostationary Lightning Mapper. Journal of Geophysical Research: Atmospheres, 2019; 124: 14285 14309. https://doi.org/10.1029/2019JD030874

Some common tasks

Create gridded NetCDF imagery

Use the script in examples/grid/make_GLM_grids.py. See the documentation in docs/index.rst for complete instructions and example commands.

Interactively plot raw flash data

See the examples folder. basic_read_plot.ipynb is a good place to start.

Reduce the dataset to a few flashes

from glmtools.io.glm import GLMDataset
filename = 'OR_GLM-L2-LCFA_G16_s20180040537000_e20180040537200_c20180040537226.nc'
glm =  GLMDataset(filename)
flash_id_list = glm.dataset.flash_id[20:30]
smaller_dataset = glm.get_flashes(flash_id_list)

Filter out flashes geographically or by events/groups per flash

See glmtools.io.glm.GLMDataset.subset_flashes.

The logic implemented above is pretty simple, and below shows how to adapt it to find large flashes.

from glmtools.io.glm import GLMDataset
filename = 'OR_GLM-L2-LCFA_G16_s20180040537000_e20180040537200_c20180040537226.nc'
glm =  GLMDataset(filename)
fl_idx = glm.dataset['flash_area'] > 2000
flash_ids = glm.dataset[{glm.fl_dim: fl_idx}].flash_id.data
smaller_dataset = glm.get_flashes(flash_ids)
print(smaller_dataset)

最近版本更新:(数据更新于 2024-09-10 10:06:18)

2019-04-23 00:41:16 v0.5.0

deeplycloudy/glmtools同语言 Python最近更新仓库

2024-12-22 18:18:34 LeslieLeung/heimdallr

2024-12-22 09:03:32 ultralytics/ultralytics

2024-12-21 13:26:40 notepad-plus-plus/nppPluginList

2024-12-21 11:42:53 XiaoMi/ha_xiaomi_home

2024-12-21 04:33:22 comfyanonymous/ComfyUI

2024-12-20 18:47:56 home-assistant/core