NVIDIA/GenerativeAIExamples
Fork: 508 Star: 2389 (更新于 2024-11-08 12:26:57)
license: Apache-2.0
Language: Python .
Generative AI reference workflows optimized for accelerated infrastructure and microservice architecture.
最后发布版本: v0.8.0 ( 2024-08-21 11:11:58)
NVIDIA Generative AI Examples
This repository is a starting point for developers looking to integrate with the NVIDIA software ecosystem to speed up their generative AI systems. Whether you are building RAG pipelines, agentic workflows, or fine-tuning models, this repository will help you integrate NVIDIA, seamlessly and natively, with your development stack.
Table of Contents
What's New?
Knowledge Graph RAG
This example implements a GPU-accelerated pipeline for creating and querying knowledge graphs using RAG by leveraging NIM microservices and the RAPIDS ecosystem to process large-scale datasets efficiently.
Agentic Workflows with Llama 3.1
- Build an Agentic RAG Pipeline with Llama 3.1 and NVIDIA NeMo Retriever NIM microservices [Blog, Notebook]
- NVIDIA Morpheus, NIM microservices, and RAG pipelines integrated to create LLM-based agent pipelines
RAG with Local NIM Deployment and LangChain
- Tips for Building a RAG Pipeline with NVIDIA AI LangChain AI Endpoints by Amit Bleiweiss. [Blog, Notebook]
For more information, refer to the Generative AI Example releases.
Try it Now!
Experience NVIDIA RAG Pipelines with just a few steps!
-
Get your NVIDIA API key.
- Go to the NVIDIA API Catalog.
- Select any model.
- Click Get API Key.
- Run:
export NVIDIA_API_KEY=nvapi-...
-
Clone the repository.
git clone https://github.com/nvidia/GenerativeAIExamples.git
-
Build and run the basic RAG pipeline.
cd GenerativeAIExamples/RAG/examples/basic_rag/langchain/ docker compose up -d --build
-
Go to https://localhost:8090/ and submit queries to the sample RAG Playground.
-
Stop containers when done.
docker compose down
RAG
RAG Notebooks
NVIDIA has first-class support for popular generative AI developer frameworks like LangChain, LlamaIndex, and Haystack. These end-to-end notebooks show how to integrate NIM microservices using your preferred generative AI development framework.
Use these notebooks to learn about the LangChain and LlamaIndex connectors.
LangChain Notebooks
- RAG
- Agents
LlamaIndex Notebooks
RAG Examples
By default, these end-to-end examples use preview NIM endpoints on NVIDIA API Catalog. Alternatively, you can run any of the examples on premises.
Basic RAG Examples
Advanced RAG Examples
RAG Tools
Example tools and tutorials to enhance LLM development and productivity when using NVIDIA RAG pipelines.
RAG Projects
- NVIDIA Tokkio LLM-RAG: Use Tokkio to add avatar animation for RAG responses.
- Hybrid RAG Project on AI Workbench: Run an NVIDIA AI Workbench example project for RAG.
Documentation
Getting Started
How To's
- Changing the Inference or Embedded Model
- Customizing the Vector Database
- Customizing the Chain Server:
- Configuring LLM Parameters at Runtime
- Supporting Multi-Turn Conversations
- Speaking Queries and Listening to Responses with NVIDIA Riva
Reference
- Support Matrix
- Architecture
- Using the Sample Chat Web Application
- RAG Playground Web Application
- Software Component Configuration
Community
We're posting these examples on GitHub to support the NVIDIA LLM community and facilitate feedback. We invite contributions! Open a GitHub issue or pull request! See contributing Check out the community examples and notebooks.
最近版本更新:(数据更新于 2024-09-16 21:26:40)
2024-08-21 11:11:58 v0.8.0
2024-06-18 23:52:25 v0.7.0
2024-05-11 01:19:40 v0.6.0
2024-03-21 02:10:24 v0.5.0
2024-02-23 04:51:31 v0.4.0
2024-01-23 00:48:50 v0.3.0
2023-12-16 03:54:40 v0.2.0
2023-11-17 03:51:40 v0.1.0
主题(topics):
gpu-acceleration, large-language-models, llm, llm-inference, microservice, nemo, rag, retrieval-augmented-generation, tensorrt, triton-inference-server
NVIDIA/GenerativeAIExamples同语言 Python最近更新仓库
2024-11-24 20:32:32 xtekky/gpt4free
2024-11-24 01:08:40 jasoneri/ComicGUISpider
2024-11-23 07:15:18 comfyanonymous/ComfyUI
2024-11-23 02:05:08 hect0x7/JMComic-Crawler-Python
2024-11-22 19:26:55 ultralytics/ultralytics
2024-11-22 18:58:34 home-assistant/core