MyGit

NVIDIA/GenerativeAIExamples

Fork: 508 Star: 2389 (更新于 2024-11-08 12:26:57)

license: Apache-2.0

Language: Python .

Generative AI reference workflows optimized for accelerated infrastructure and microservice architecture.

最后发布版本: v0.8.0 ( 2024-08-21 11:11:58)

GitHub网址

NVIDIA Generative AI Examples

This repository is a starting point for developers looking to integrate with the NVIDIA software ecosystem to speed up their generative AI systems. Whether you are building RAG pipelines, agentic workflows, or fine-tuning models, this repository will help you integrate NVIDIA, seamlessly and natively, with your development stack.

Table of Contents

What's New?

Knowledge Graph RAG

This example implements a GPU-accelerated pipeline for creating and querying knowledge graphs using RAG by leveraging NIM microservices and the RAPIDS ecosystem to process large-scale datasets efficiently.

Agentic Workflows with Llama 3.1

RAG with Local NIM Deployment and LangChain

  • Tips for Building a RAG Pipeline with NVIDIA AI LangChain AI Endpoints by Amit Bleiweiss. [Blog, Notebook]

For more information, refer to the Generative AI Example releases.

Try it Now!

Experience NVIDIA RAG Pipelines with just a few steps!

  1. Get your NVIDIA API key.

    1. Go to the NVIDIA API Catalog.
    2. Select any model.
    3. Click Get API Key.
    4. Run:
      export NVIDIA_API_KEY=nvapi-...
      
  2. Clone the repository.

    git clone https://github.com/nvidia/GenerativeAIExamples.git
    
  3. Build and run the basic RAG pipeline.

    cd GenerativeAIExamples/RAG/examples/basic_rag/langchain/
    docker compose up -d --build
    
  4. Go to https://localhost:8090/ and submit queries to the sample RAG Playground.

  5. Stop containers when done.

    docker compose down
    

RAG

RAG Notebooks

NVIDIA has first-class support for popular generative AI developer frameworks like LangChain, LlamaIndex, and Haystack. These end-to-end notebooks show how to integrate NIM microservices using your preferred generative AI development framework.

Use these notebooks to learn about the LangChain and LlamaIndex connectors.

LangChain Notebooks

LlamaIndex Notebooks

RAG Examples

By default, these end-to-end examples use preview NIM endpoints on NVIDIA API Catalog. Alternatively, you can run any of the examples on premises.

Basic RAG Examples

Advanced RAG Examples

RAG Tools

Example tools and tutorials to enhance LLM development and productivity when using NVIDIA RAG pipelines.

RAG Projects

Documentation

Getting Started

How To's

Reference

Community

We're posting these examples on GitHub to support the NVIDIA LLM community and facilitate feedback. We invite contributions! Open a GitHub issue or pull request! See contributing Check out the community examples and notebooks.

最近版本更新:(数据更新于 2024-09-16 21:26:40)

2024-08-21 11:11:58 v0.8.0

2024-06-18 23:52:25 v0.7.0

2024-05-11 01:19:40 v0.6.0

2024-03-21 02:10:24 v0.5.0

2024-02-23 04:51:31 v0.4.0

2024-01-23 00:48:50 v0.3.0

2023-12-16 03:54:40 v0.2.0

2023-11-17 03:51:40 v0.1.0

主题(topics):

gpu-acceleration, large-language-models, llm, llm-inference, microservice, nemo, rag, retrieval-augmented-generation, tensorrt, triton-inference-server

NVIDIA/GenerativeAIExamples同语言 Python最近更新仓库

2024-11-24 20:32:32 xtekky/gpt4free

2024-11-24 01:08:40 jasoneri/ComicGUISpider

2024-11-23 07:15:18 comfyanonymous/ComfyUI

2024-11-23 02:05:08 hect0x7/JMComic-Crawler-Python

2024-11-22 19:26:55 ultralytics/ultralytics

2024-11-22 18:58:34 home-assistant/core