MyGit

isl-org/DPT

Fork: 258 Star: 2009 (更新于 2024-11-02 11:59:11)

license: MIT

Language: Python .

Dense Prediction Transformers

最后发布版本: 1_0 ( 2021-03-23 02:42:43)

GitHub网址

Vision Transformers for Dense Prediction

This repository contains code and models for our paper:

Vision Transformers for Dense Prediction
René Ranftl, Alexey Bochkovskiy, Vladlen Koltun

Changelog

  • [March 2021] Initial release of inference code and models

Setup

  1. Download the model weights and place them in the weights folder:

Monodepth:

Segmentation:

  1. Set up dependencies:

    pip install -r requirements.txt
    

    The code was tested with Python 3.7, PyTorch 1.8.0, OpenCV 4.5.1, and timm 0.4.5

Usage

  1. Place one or more input images in the folder input.

  2. Run a monocular depth estimation model:

    python run_monodepth.py
    

    Or run a semantic segmentation model:

    python run_segmentation.py
    
  3. The results are written to the folder output_monodepth and output_semseg, respectively.

Use the flag -t to switch between different models. Possible options are dpt_hybrid (default) and dpt_large.

Additional models:

Run with

python run_monodepth -t [dpt_hybrid_kitti|dpt_hybrid_nyu] 

Evaluation

Hints on how to evaluate monodepth models can be found here: https://github.com/intel-isl/DPT/blob/main/EVALUATION.md

Citation

Please cite our papers if you use this code or any of the models.

@article{Ranftl2021,
	author    = {Ren\'{e} Ranftl and Alexey Bochkovskiy and Vladlen Koltun},
	title     = {Vision Transformers for Dense Prediction},
	journal   = {ArXiv preprint},
	year      = {2021},
}
@article{Ranftl2020,
	author    = {Ren\'{e} Ranftl and Katrin Lasinger and David Hafner and Konrad Schindler and Vladlen Koltun},
	title     = {Towards Robust Monocular Depth Estimation: Mixing Datasets for Zero-shot Cross-dataset Transfer},
	journal   = {IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)},
	year      = {2020},
}

Acknowledgements

Our work builds on and uses code from timm and PyTorch-Encoding. We'd like to thank the authors for making these libraries available.

License

MIT License

最近版本更新:(数据更新于 2024-09-10 19:12:06)

2021-03-23 02:42:43 1_0

isl-org/DPT同语言 Python最近更新仓库

2024-11-06 03:34:16 home-assistant/core

2024-11-05 21:24:09 ai25395/FMatPix

2024-11-05 16:16:26 Guovin/TV

2024-11-05 15:03:24 Cinnamon/kotaemon

2024-11-04 23:11:11 DS4SD/docling

2024-11-04 10:56:18 open-compass/opencompass