LAMDA-NJU/Deep-Forest
Fork: 158 Star: 911 (更新于 2024-10-15 22:06:19)
license: NOASSERTION
Language: Python .
An Efficient, Scalable and Optimized Python Framework for Deep Forest (2021.2.1)
最后发布版本: v0.1.7 ( 2022-10-01 12:05:07)
Deep Forest (DF) 21
|github|_ |readthedocs|_ |codecov|_ |python|_ |pypi|_ |style|_
.. |github| image:: https://github.com/LAMDA-NJU/Deep-Forest/workflows/DeepForest-CI/badge.svg .. _github: https://github.com/LAMDA-NJU/Deep-Forest/actions
.. |readthedocs| image:: https://readthedocs.org/projects/deep-forest/badge/?version=latest .. _readthedocs: https://deep-forest.readthedocs.io
.. |codecov| image:: https://codecov.io/gh/LAMDA-NJU/Deep-Forest/branch/master/graph/badge.svg?token=5BVXOT8RPO .. _codecov: https://codecov.io/gh/LAMDA-NJU/Deep-Forest
.. |python| image:: https://img.shields.io/pypi/pyversions/deep-forest .. _python: https://pypi.org/project/deep-forest/
.. |pypi| image:: https://img.shields.io/pypi/v/deep-forest?color=blue .. _pypi: https://pypi.org/project/deep-forest/
.. |style| image:: https://img.shields.io/badge/code%20style-black-000000.svg .. _style: https://github.com/psf/black
DF21 is an implementation of Deep Forest <https://arxiv.org/pdf/1702.08835.pdf>
__ 2021.2.1. It is designed to have the following advantages:
- Powerful: Better accuracy than existing tree-based ensemble methods.
- Easy to Use: Less efforts on tunning parameters.
- Efficient: Fast training speed and high efficiency.
- Scalable: Capable of handling large-scale data.
DF21 offers an effective & powerful option to the tree-based machine learning algorithms such as Random Forest or GBDT.
For a quick start, please refer to How to Get Started <https://deep-forest.readthedocs.io/en/latest/how_to_get_started.html>
. For a detailed guidance on parameter tunning, please refer to Parameters Tunning <https://deep-forest.readthedocs.io/en/latest/parameters_tunning.html>
.
DF21 is optimized for what a tree-based ensemble excels at (i.e., tabular data), if you want to use the multi-grained scanning part to better handle structured data like images, please refer to the origin implementation <https://github.com/kingfengji/gcForest>
__ for details.
Installation
DF21 can be installed using pip via PyPI <https://pypi.org/project/deep-forest/>
__ which is the package installer for Python. You can use pip to install packages from the Python Package Index and other indexes. Refer this <https://pypi.org/project/pip/>
__ for the documentation of pip. Use this command to download DF21 :
.. code-block:: bash
pip install deep-forest
Quickstart
Classification
.. code-block:: python
from sklearn.datasets import load_digits
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
from deepforest import CascadeForestClassifier
X, y = load_digits(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=1)
model = CascadeForestClassifier(random_state=1)
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
acc = accuracy_score(y_test, y_pred) * 100
print("\nTesting Accuracy: {:.3f} %".format(acc))
>>> Testing Accuracy: 98.667 %
Regression
.. code-block:: python
from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
from deepforest import CascadeForestRegressor
X, y = load_boston(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=1)
model = CascadeForestRegressor(random_state=1)
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
mse = mean_squared_error(y_test, y_pred)
print("\nTesting MSE: {:.3f}".format(mse))
>>> Testing MSE: 8.068
Resources
-
Documentation <https://deep-forest.readthedocs.io/>
__ - Deep Forest:
[Conference] <https://www.ijcai.org/proceedings/2017/0497.pdf>
__ |[Journal] <https://academic.oup.com/nsr/article-pdf/6/1/74/30336169/nwy108.pdf>
__ - Keynote at AISTATS 2019:
[Slides] <https://aistats.org/aistats2019/0-AISTATS2019-slides-zhi-hua_zhou.pdf>
__
Reference
.. code-block:: latex
@article{zhou2019deep,
title={Deep forest},
author={Zhi-Hua Zhou and Ji Feng},
journal={National Science Review},
volume={6},
number={1},
pages={74--86},
year={2019}}
@inproceedings{zhou2017deep,
title = {{Deep Forest:} Towards an alternative to deep neural networks},
author = {Zhi-Hua Zhou and Ji Feng},
booktitle = {IJCAI},
pages = {3553--3559},
year = {2017}}
Thanks to all our contributors
|contributors|
.. |contributors| image:: https://contributors-img.web.app/image?repo=LAMDA-NJU/Deep-Forest .. _contributors: https://github.com/LAMDA-NJU/Deep-Forest/graphs/contributors
最近版本更新:(数据更新于 2024-09-24 02:51:38)
2022-10-01 12:05:07 v0.1.7
2022-09-18 00:25:07 v0.1.6
2021-04-16 18:58:06 v0.1.5
2021-03-11 18:13:06 v0.1.4
2021-02-23 00:25:48 v0.1.3
2021-02-11 11:31:49 v0.1.2
2021-02-07 16:03:21 v0.1.1
主题(topics):
deep-forest, ensemble-learning, machine-learning, python, random-forest
LAMDA-NJU/Deep-Forest同语言 Python最近更新仓库
2024-11-05 16:16:26 Guovin/TV
2024-11-05 15:03:24 Cinnamon/kotaemon
2024-11-05 11:00:51 home-assistant/core
2024-11-04 23:11:11 DS4SD/docling
2024-11-04 10:56:18 open-compass/opencompass
2024-11-04 08:51:21 yt-dlp/yt-dlp