v0.4.0
版本发布时间: 2018-01-04 16:38:56
intel-analytics/ipex-llm最新发布版本:v2.1.0(2024-08-22 17:06:57)
Highlights
- Supported all Keras layers, and support Keras 1.2.2 model loading. See keras-support for detail
- Python 3.6 support
- OpenCV support, and add a dozen of image transformer based on OpenCV
- More layers/operations
New Features
- Models & Layers & Operations & Loss function
- Add layers for Keras: Cropping2D, Cropping3D, UpSampling1D, UpSampling2D, UpSampling3D, masking,Maxout,HighWay,GaussianDropout, GaussianNoise, CAveTable, VolumetricAveragePooling, HardSigmoidSReLU, LocallyConnected1D, LocallyConnected2D, SpatialSeparableConvolution, ActivityRegularization, SpatialDropout1D, SpatialDropout2D, SpatialDropout3D
- Add Criterion for keras: PoissonCriterion, KullbackLeiblerDivergenceCriterion, MeanAbsolutePercentageCriterion, MeanSquaredLogarithmicCriterion, CosineProximityCriterion
- Support NHWC for LRN and BatchNormalization
- Add LookupTableSparse (lookup table for multivalue)
- Add activation argument for recurrent layers
- Add MultiRNNCell
- Add SpatialSeparableConvolution
- Add MSRA filler
- Support SAME padding in 3d conv and allows user config padding size in convlstm and convlstm3d
- TF opteration: SegmentSum, conv3d related operations, Dilation2D, Dilation2DBackpropFilter, Dilation2DBackpropInput, Digamma, Erf, Erfc, Lgamma, TanhGrad, depthwise, Rint, All, Any, Range, Exp, Expm1, Round, FloorDiv, TruncateDiv, Mod, FloorMod, TruncateMod, IntopK, Round, Maximum, Minimum, BatchMatMu, Sqrt, SqrtGrad, Square, RsqrtGrad, AvgPool, AvgPoolGrad, BiasAddV1, SigmoidGrad, Relu6, Relu6Grad, Elu, EluGrad, Softplus, SoftplusGrad, LogSoftmax, Softsign, SoftsignGrad, Abs, LessEqual, GreaterEqual, ApproximateEqual, Log, LogGrad, Log1p, Log1pGrad, SquaredDifference, Div, Ceil, Inv, InvGrad, IsFinite, IsInf, IsNan, Sign, TopK. See details at tensorflow_ops_list)
- Add object detection related layers: PriorBox, NormalizeScale, Proposal, DetectionOutputSSD, DetectionOutputFrcnn, Anchor
- Transformer
- Add image Transformer based on OpenCV: Resize, Brightness, ChannelOrder, Contrast, Saturation, Hue, ChannelNormalize, PixelNormalize, RandomCrop, CenterCrop, FixedCrop, DetectionCrop, Expand, Filler, ColorJitter, RandomSampler, MatToFloats, AspectScale, RandomAspectScale, BytesToMat
- Add Transformer: RandomTransformer, RoiProject, RoiHFlip, RoiResize, RoiNormalize
- API change
- Add predictImage function in LocalPredictor
- Add partition number option for ImageFrame read
- Add an API to get node from graph model with given name
- Support List of JTensors for label in Python API
- Expose local optimizer and predictor in Python API
- Install & Deploy
- Support BigDL on Spark on k8s
- Model Save/Load
- Support big-sized model (parameter exceed > 2.1G) for both java and protobuffer
- Support keras model loading
- Training
- Allow user to set new train data or new criterion for optimizer reusing
- Support gradient clipping (constant clip and clip by L2-norm)
Enhancement
- Speed up BatchNormalization.
- Speed up MSECriterion
- Speed up Adam
- Speed up static graph execution
- Support reading TFRecord files from HDFS
- Support reading raw binary files from HDFS
- Check input size in concat layer
- Add proper exception handling for CaffeLoader&Persister
- Add serialization support for multiple tensor numeric
- Add an Activity wrapper for Python to simplify the returning value
- Override joda-time in hadoop-aws to reduce compile time
- LocalOptimizer-use modelbroadcast-like method to clone module
- Time counting for paralleltable's forward/backward
- Use shade to package jar-with-dependencies to manage some package conflict
- Support loading bigdl_conf_file in multiple python zip files
Bug Fix
- Fix getModel failed in DistriOptimizer when model parameters exceed 2.1G
- Fix core number is 0 where there's only one core in system
- Fix SparseJoinTable throw exception if input’s nElement changed.
- Fix some issues found when save bigdl model to tensorflow format file
- Fix return object type error of DLClassifier.transform in Python
- Fix graph generatebackward is lost in serialization
- Fix resizing tensor to empty tensor doesn’t work properly
- Fix Adapter layer does not support different batch size at runtime
- Fix Adaper layer cannot be serialized directly
- Fix calling wrong function when set user-defined mkl threads
- Fix SmoothL1Criterion and SoftmaxWithCriterion doesn’t deal with input’s offset.
- Fix L1Regularization throw NullPointerException while broadcasting model.
- Fix CMul layer will crash for certain configure