MyGit

v1.0.0rc0

open-mmlab/mmocr

版本发布时间: 2022-09-01 14:30:00

open-mmlab/mmocr最新发布版本:v1.0.1(2023-07-04 15:11:53)

We are excited to announce the release of MMOCR 1.0.0rc0! MMOCR 1.0.0rc0 is the first version of MMOCR 1.x, a part of the OpenMMLab 2.0 projects. Built upon the new training engine, MMOCR 1.x unifies the interfaces of dataset, models, evaluation, and visualization with faster training and testing speed.

Highlights

  1. New engines. MMOCR 1.x is based on MMEngine, which provides a general and powerful runner that allows more flexible customizations and significantly simplifies the entrypoints of high-level interfaces.

  2. Unified interfaces. As a part of the OpenMMLab 2.0 projects, MMOCR 1.x unifies and refactors the interfaces and internal logics of train, testing, datasets, models, evaluation, and visualization. All the OpenMMLab 2.0 projects share the same design in those interfaces and logics to allow the emergence of multi-task/modality algorithms.

  3. Cross project calling. Benefiting from the unified design, you can use the models implemented in other OpenMMLab projects, such as MMDet. We provide an example of how to use MMDetection's Mask R-CNN through MMDetWrapper. Check our documents for more details. More wrappers will be released in the future.

  4. Stronger visualization. We provide a series of useful tools which are mostly based on brand-new visualizers. As a result, it is more convenient for the users to explore the models and datasets now.

  5. More documentation and tutorials. We add a bunch of documentation and tutorials to help users get started more smoothly. Read it here.

Breaking Changes

We briefly list the major breaking changes here. We also have the migration guide that provides complete details and migration instructions.

Dependencies

Training and testing

Configs

Dataset

The Dataset classes implemented in MMOCR 1.x all inherits from the BaseDetDataset, which inherits from the BaseDataset in MMEngine. There are several changes of Dataset in MMOCR 1.x.

Data Transforms

Data transforms in MMOCR 1.x all inherits from those in MMCV>=2.0.0rc0, which follows a new convention in OpenMMLab 2.0 projects. The changes are listed below:

Model

The models in MMOCR 1.x all inherit from BaseModel in MMEngine, which defines a new convention of models in OpenMMLab 2.0 projects. Users can refer to the tutorial of model in MMEngine for more details. Accordingly, there are several changes as the following:

Evaluation

MMOCR 1.x mainly implements corresponding metrics for each task, which are manipulated by Evaluator to complete the evaluation. In addition, users can build an evaluator in MMOCR 1.x to conduct offline evaluation, i.e., evaluate predictions that may not be produced by MMOCR, prediction follows our dataset conventions. More details can be find in the Evaluation Tutorial in MMEngine.

Visualization

The functions of visualization in MMOCR 1.x are removed. Instead, in OpenMMLab 2.0 projects, we use Visualizer to visualize data. MMOCR 1.x implements TextDetLocalVisualizer, TextRecogLocalVisualizer, and KIELocalVisualizer to allow visualization of ground truths, model predictions, and feature maps, etc., at any place, for the three tasks supported in MMOCR. It also supports dumping the visualization data to any external visualization backends such as Tensorboard and Wandb. Check our Visualization Document for more details.

Improvements

Ongoing changes

  1. Test-time augmentation: which was supported in MMOCR 0.x, is not implemented yet in this version due to limited time slot. We will support it in the following releases with a new and simplified design.
  2. Inference interfaces: unified inference interfaces will be supported in the future to ease the use of released models.
  3. Interfaces of useful tools that can be used in notebook: more useful tools that are implemented in the tools/ directory will have their python interfaces so that they can be used through notebook and in downstream libraries.
  4. Documentation: we will add more design docs, tutorials, and migration guidance so that the community can deep dive into our new design, participate the future development, and smoothly migrate downstream libraries to MMOCR 1.x.

相关地址:原始地址 下载(tar) 下载(zip)

查看:2022-09-01发行的版本