v0.2.0
版本发布时间: 2017-07-24 14:06:21
intel-analytics/ipex-llm最新发布版本:v2.1.0(2024-08-22 17:06:57)
New feature
- A new BigDL document website online https://bigdl-project.github.io/, which replace the original BigDL wiki
- Added New Models & Layers
- TreeLSTM and examples for sentiment analytics
- convLSTM layer
- 1D convolution layer
- Mean Absolute Error (MAE) metrics
- TimeDistributed Layer
- VolumetricConvolution(3D convolution)
- VolumetricMaxPooling
- RoiPooling layer
- DiceCoefficient loss
- bi-recurrent layers
- API change
- Allow user to set regularization per layer
- Allow user to set learning rate per layer
- Add predictClass API for python
- Add DLEstimator for Spark ML pipeline
- Add Functional API for model definition
- Add movie length dataset API
- Add 4d normalize support
- Add evaluator API to simplify model test
- Install & Deploy
- Allow user to install BigDL from pip
- Support win64 platform
- A new script to auto pack/distribute python dependency on yarn cluster mode
- Model Save/Load
- Allow user to save BigDL model as Caffe model file
- Allow user to load/save some Tensorflow model(cover tensorflow slim APIs)
- Support save/load model file from/to s3/hdfs
- Optimization
- Add plateau learning rate schedule
- Allow user to adjust optimization process based on loss and score
- Add Exponential learning rate decay
- Add natural exp decay learning rate schedule
- Add multistep learning rate policy
Enhancement
- Optimization method API refactor
- Allow user to load a Caffe model without pre-defining a BigDL model
- Optimize Recurrent Layers performance
- Refine the ML pipeline related API, and add more examples
- Optimize JoinTable layer performance
- Allow user to use nio blockmanager on Spark 1.5
- Refine layer parameter initialization algorithm API
- Refine Sample class to save memory usage when cache train/test dataset as tensor format
- Refine MiniBatch API to support padding and multiple tensors
- Remove bigdl.sh. BigDL will set MKL behavior through MKL Java API, and user can control this via Java properties
- Allow user to remove Spark log in redirecting log file
- Allow user create a SpatialConvultion layer without bias
- Refine validation metrics API
- Refine smoothL1Criterion and reduce tensor storage usage
- Use reflection to handle difference of Spark2 platforms, and user need not to recompile BigDL for different Spark2 platform
- Optimize FlattenTable performance
- Use maven package instead of script to copy dist artifacts together
Bug Fix
- Fix some error in Text-classifier document
- Fix a bug when call JoinTable after clearState()
- Fix a bug in Concat layer when the dimension concatenated along is larger than 2
- Fix a bug in MapTable layer
- Fix some multi-thread error not catch issue
- Fix maven artifact dependency issue
- Fix model save method won’t close the stream issue
- Fix a bug in BCECriterion
- Fix some ConcatTable don’t clear gradInput buffer
- Fix SpatialDilatedConvolution not clear gradInput content