MyGit

v0.1-tpu-weights

huggingface/pytorch-image-models

版本发布时间: 2022-03-19 06:50:29

huggingface/pytorch-image-models最新发布版本:v1.0.9(2024-08-24 07:42:07)

A wide range of mid-large sized models trained in PyTorch XLA on TPU VM instances. Demonstrating viability of the TPU + PyTorch combo for excellent image model results. All models trained w/ the bits_and_tpu branch of this codebase.

A big thanks to the TPU Research Cloud (https://sites.research.google/trc/about/) for the compute used in these experiments.

This set includes several novel weights, including EvoNorm-S RegNetZ (C/D timm variants) and ResNet-V2 model experiments, as well as custom pre-activation model variants of RegNet-Y (called RegNet-V) and Xception (Xception-P) models.

Many if not all of the included RegNet weights surpass original paper results by a wide margin and remain above other known results (e.g. recent torchvision updates) in ImageNet-1k validation and especially OOD test set / robustness performance and scaling to higher resolutions.

RegNets

Alternative norm layers (no BN!)

Xception redux

ResNets (w/ SE and/or NeXT)

Vision transformer experiments -- relpos, residual-post-norm, layer-scale, fc-norm, and GAP

相关地址:原始地址 下载(tar) 下载(zip)

1、 cs3darknet_focus_l_c2ns-65ef8888.pth 80.85MB

2、 cs3darknet_focus_m_c2ns-e23bed41.pth 35.6MB

3、 cs3darknet_l_c2ns-16220c5d.pth 80.9MB

4、 cs3darknet_m_c2ns-43f06604.pth 35.62MB

5、 cs3darknet_x_c2ns-4e4490aa.pth 133.9MB

6、 cs3edgenet_x_c2-2e1610a9.pth 182.66MB

7、 cs3sedarknet_l_c2ns-e8d1dc13.pth 83.77MB

8、 cs3sedarknet_x_c2ns-b4d0abc0.pth 135.26MB

9、 cs3se_edgenet_x_c2ns-76f8e3ac.pth 193.74MB

10、 darknet53_256_c2ns-3aeff817.pth 158.91MB

11、 darknetaa53_c2ns-5c28ec8a.pth 137.6MB

12、 regnetv_040_ra3-c248f51f.pth 79.02MB

13、 regnetv_064_ra3-530616c2.pth 117MB

14、 regnety_040_ra3-670e1166.pth 79.07MB

15、 regnety_064_ra3-aa26dc7d.pth 117.06MB

16、 regnety_080_ra3-1fdc4344.pth 149.85MB

17、 regnetz_040h_ra3-f594343b.pth 110.99MB

18、 regnetz_040_ra3-9007edf5.pth 104.03MB

19、 regnetz_c16_evos_ch-d8311942.pth 51.5MB

20、 regnetz_d8_evos_ch-2bc12646.pth 89.57MB

21、 resnetrs200_c-6b698b88.pth 356.46MB

22、 resnetv2_50d_evos_ah-7c4dd548.pth 97.65MB

23、 resnetv2_50d_gn_ah-c415c11a.pth 97.56MB

24、 resnext101_64x4d_c-0d0e0cc0.pth 319.22MB

25、 seresnext101d_32x8d_ah-191d7b94.pth 357.9MB

26、 seresnext101_32x8d_ah-e6bc4c0a.pth 357.82MB

27、 seresnextaa101d_32x8d_ah-83c8ae12.pth 357.9MB

28、 vit_base_patch16_rpn_224-sw-3b07e89d.pth 330.14MB

29、 vit_relpos_base_patch16_224-sw-49049aed.pth 329.73MB

30、 vit_relpos_base_patch16_gapcls_224-sw-1a341d6c.pth 329.74MB

31、 vit_relpos_medium_patch16_224-sw-11c174af.pth 147.84MB

32、 vit_relpos_medium_patch16_cls_224-sw-cfe8e259.pth 147.91MB

33、 vit_relpos_medium_patch16_rpn_224-sw-5d2befd8.pth 147.79MB

34、 vit_relpos_small_patch16_224-sw-ec2778b4.pth 83.89MB

35、 vit_replos_base_patch32_plus_rpn_256-sw-dd486f51.pth 455.59MB

36、 vit_srelpos_medium_patch16_224-sw-ad702b8c.pth 147.79MB

37、 vit_srelpos_small_patch16_224-sw-6cdb8849.pth 83.85MB

38、 xception41p_ra3-33195bc8.pth 102.89MB

39、 xception65p_ra3-3c6114e4.pth 152.31MB

40、 xception65_ra3-1447db8d.pth 153.1MB

查看:2022-03-19发行的版本