v0.1-tpu-weights
版本发布时间: 2022-03-19 06:50:29
huggingface/pytorch-image-models最新发布版本:v1.0.9(2024-08-24 07:42:07)
A wide range of mid-large sized models trained in PyTorch XLA on TPU VM instances. Demonstrating viability of the TPU + PyTorch combo for excellent image model results. All models trained w/ the bits_and_tpu
branch of this codebase.
A big thanks to the TPU Research Cloud (https://sites.research.google/trc/about/) for the compute used in these experiments.
This set includes several novel weights, including EvoNorm-S RegNetZ (C/D timm variants) and ResNet-V2 model experiments, as well as custom pre-activation model variants of RegNet-Y (called RegNet-V) and Xception (Xception-P) models.
Many if not all of the included RegNet weights surpass original paper results by a wide margin and remain above other known results (e.g. recent torchvision updates) in ImageNet-1k validation and especially OOD test set / robustness performance and scaling to higher resolutions.
RegNets
-
regnety_040
- 82.3 @ 224, 82.96 @ 288 -
regnety_064
- 83.0 @ 224, 83.65 @ 288 -
regnety_080
- 83.17 @ 224, 83.86 @ 288 -
regnetv_040
- 82.44 @ 224, 83.18 @ 288 (timm pre-act) -
regnetv_064
- 83.1 @ 224, 83.71 @ 288 (timm pre-act) -
regnetz_040
- 83.67 @ 256, 84.25 @ 320 -
regnetz_040h
- 83.77 @ 256, 84.5 @ 320 (w/ extra fc in head)
Alternative norm layers (no BN!)
-
resnetv2_50d_gn
- 80.8 @ 224, 81.96 @ 288 (pre-act GroupNorm) -
resnetv2_50d_evos
80.77 @ 224, 82.04 @ 288 (pre-act EvoNormS) -
regnetz_c16_evos
- 81.9 @ 256, 82.64 @ 320 (EvoNormS) -
regnetz_d8_evos
- 83.42 @ 256, 84.04 @ 320 (EvoNormS)
Xception redux
-
xception41p
- 82 @ 299 (timm pre-act) -
xception65
- 83.17 @ 299 -
xception65p
- 83.14 @ 299 (timm pre-act)
ResNets (w/ SE and/or NeXT)
-
resnext101_64x4d
- 82.46 @ 224, 83.16 @ 288 -
seresnext101_32x8d
- 83.57 @ 224, 84.27 @ 288 -
seresnext101d_32x8d
- 83.69 @ 224, 84.35 @ 288 -
seresnextaa101d_32x8d
- 83.85 @ 224, 84.57 @ 288 -
resnetrs200
- 83.85 @ 256, 84.44 @ 320
Vision transformer experiments -- relpos, residual-post-norm, layer-scale, fc-norm, and GAP
-
vit_relpos_base_patch32_plus_rpn_256
- 79.5 @ 256, 80.6 @ 320 -- rel pos + extended width + res-post-norm, no class token, avg pool -
vit_relpos_small_patch16_224
- 81.5 @ 224, 82.5 @ 320 -- rel pos, layer scale, no class token, avg pool -
vit_relpos_medium_patch16_rpn_224
- 82.3 @ 224, 83.1 @ 320 -- rel pos + res-post-norm, no class token, avg pool -
vit_base_patch16_rpn_224
- 82.3 @ 224 -- rel pos + res-post-norm, no class token, avg pool -
vit_relpos_medium_patch16_224
- 82.5 @ 224, 83.3 @ 320 -- rel pos, layer scale, no class token, avg pool -
vit_relpos_base_patch16_224
- 82.5 @ 224, 83.6 @ 320 -- rel pos, layer scale, no class token, avg pool -
vit_relpos_base_patch16_gapcls_224
- 82.8 @ 224, 83.9 @ 320 -- rel pos, layer scale, class token, avg pool (by mistake)
1、 cs3darknet_focus_l_c2ns-65ef8888.pth 80.85MB
2、 cs3darknet_focus_m_c2ns-e23bed41.pth 35.6MB
3、 cs3darknet_l_c2ns-16220c5d.pth 80.9MB
4、 cs3darknet_m_c2ns-43f06604.pth 35.62MB
5、 cs3darknet_x_c2ns-4e4490aa.pth 133.9MB
6、 cs3edgenet_x_c2-2e1610a9.pth 182.66MB
7、 cs3sedarknet_l_c2ns-e8d1dc13.pth 83.77MB
8、 cs3sedarknet_x_c2ns-b4d0abc0.pth 135.26MB
9、 cs3se_edgenet_x_c2ns-76f8e3ac.pth 193.74MB
10、 darknet53_256_c2ns-3aeff817.pth 158.91MB
11、 darknetaa53_c2ns-5c28ec8a.pth 137.6MB
12、 regnetv_040_ra3-c248f51f.pth 79.02MB
13、 regnetv_064_ra3-530616c2.pth 117MB
14、 regnety_040_ra3-670e1166.pth 79.07MB
15、 regnety_064_ra3-aa26dc7d.pth 117.06MB
16、 regnety_080_ra3-1fdc4344.pth 149.85MB
17、 regnetz_040h_ra3-f594343b.pth 110.99MB
18、 regnetz_040_ra3-9007edf5.pth 104.03MB
19、 regnetz_c16_evos_ch-d8311942.pth 51.5MB
20、 regnetz_d8_evos_ch-2bc12646.pth 89.57MB
21、 resnetrs200_c-6b698b88.pth 356.46MB
22、 resnetv2_50d_evos_ah-7c4dd548.pth 97.65MB
23、 resnetv2_50d_gn_ah-c415c11a.pth 97.56MB
24、 resnext101_64x4d_c-0d0e0cc0.pth 319.22MB
25、 seresnext101d_32x8d_ah-191d7b94.pth 357.9MB
26、 seresnext101_32x8d_ah-e6bc4c0a.pth 357.82MB
27、 seresnextaa101d_32x8d_ah-83c8ae12.pth 357.9MB
28、 vit_base_patch16_rpn_224-sw-3b07e89d.pth 330.14MB
29、 vit_relpos_base_patch16_224-sw-49049aed.pth 329.73MB
30、 vit_relpos_base_patch16_gapcls_224-sw-1a341d6c.pth 329.74MB
31、 vit_relpos_medium_patch16_224-sw-11c174af.pth 147.84MB
32、 vit_relpos_medium_patch16_cls_224-sw-cfe8e259.pth 147.91MB
33、 vit_relpos_medium_patch16_rpn_224-sw-5d2befd8.pth 147.79MB
34、 vit_relpos_small_patch16_224-sw-ec2778b4.pth 83.89MB
35、 vit_replos_base_patch32_plus_rpn_256-sw-dd486f51.pth 455.59MB
36、 vit_srelpos_medium_patch16_224-sw-ad702b8c.pth 147.79MB
37、 vit_srelpos_small_patch16_224-sw-6cdb8849.pth 83.85MB
38、 xception41p_ra3-33195bc8.pth 102.89MB
39、 xception65p_ra3-3c6114e4.pth 152.31MB
40、 xception65_ra3-1447db8d.pth 153.1MB