v2.1.2
版本发布时间: 2021-08-11 16:08:12
PaddlePaddle/Paddle最新发布版本:v3.0.0-beta0(2024-06-27 18:00:34)
2.1.2 Release Note
重要更新
本版本主要是对2.1.1中一些功能和性能问题的修复,重点如下:
- 修复了基础API中的已知问题。
- 修复了动转静语法转写已知的若干问题。
- 自定义OP编译时C++版本检查由C++11升级为C++14。
训练框架
功能优化(含分布式)
基础API
- 修复
paddle.vision
路径下部分API无法访问的问题。(#34489) - 修复
paddle.concat
在应用到多个大shape
的Tensor时溢出的问题。(#34396) -
paddle.flip
支持输入axis为整型,并提升了动态图模式下的性能。(#34477) - 修复
paddle.slice
输入输出地址相同时越界访问问题。(#34265) - 修复
paddle.nn.Unfold
的输入参数顺序错误的问题。(#34251) - 新增了静态图下
Tensor
的若干接口,如size()、detach()
等。 (#33330) -
Tensor.grad
的 Warning内容中增加了不兼容升级的说明。(#34262) - 下线
paddle.save
保存Layer
的功能。(#34039) - 修复
paddle.jit.save
在Mac系统上保存的模型,在Linux平台上无法对模型进行重训练的问题。(#34154) - 修复
layer_norm
在大size
输入时cuda kernel
参数错误的问题。(#33893) - 修复
paddle.io.DataLoader
误报不兼容升级warning问题。(#34001) - 修复
paddle.io.DataLoader
内存泄漏问题。(#34301)
动态图转静态图
- 新增对
Sequential
容器类嵌套使用时的语法支持。(#34246) - 新增对
Python3 type hint
语法的兼容支持。(#33745) -
@to_static
中input_spec
参数新增支持非Tensor
类型,如int、float、string、bool
等。(#33464) - 修复了动转静语法转写已知的若干问题。(#33963)
自定义OP
- 自定义OP编译时C++版本检查由C++11升级为C++14。 (#30415)
推理部署
Paddle Inference
问题修复
- 修复
batch_size > 1
时ERNIE模型计算结果错误的问题。(#33784) - 修复windows下
TensortRT
推理路径用右斜杠分割导致的崩溃。(#33885) - 修复MKLDNN
elementwise
系列OP的X不支持广播的问题。(#33845)
环境适配
编译安装
新硬件适配
昆仑硬件训练支持
- 修改昆仑的
cmake
文件,统一更新昆仑的算子库。(#34000)
Important Updates
This release mainly fixes some features and performance issues in 2.1.1. See the following highlights:
- Fix several known issues in frontend APIs.
- Fix several known issues with dynamic to static syntax transcriptions.
- C++ version check upgrade from C++11 to C++14 during Custom OP compile.
Training framework
Functional optimization (including distributed)
Basic API
- Fix some APIs located in
paddle.vision
are not accessible issues. (#34489) - Fix
paddle.concat
overflow when applied to multiple Tensor with largeshape
. (#34396) -
paddle.flip
supports input axis as integer, and improves performance in dynamic graph mode. (#34477) - Fix
paddle.slice
out-of-bounds access problem when input and output addresses are the same. (#34265) - Fix the problem of wrong order of input parameters of
paddle.nn.Unfold
. (#34251) - Add several interfaces for
Tensor
under static graphs such assize(), detach()
, etc. (#33330) - Add incompatible upgrade note to the Warning content of
Tensor.grad
.(#34262) - Downlink
paddle.save
to save the function ofLayer
. (#34039) - Fix
paddle.jit.save
for saving models on Mac systems that cannot be retrained on Linux platforms. (#34154) - Fix
layer_norm
with wrongcuda kernel
parameters for largesize
input. (#33893) - Fix
paddle.io.DataLoader
error reporting incompatible upgrade warning issue. (#34001) - Fix
paddle.io.DataLoader
memory leak problem. (#34301)
Dynamic to static map
- Add syntax support for nested use of
Sequential
container classes. (#34246) - Add compatibility support for
Python3 type hint
syntax. (#33745) - Add support for non-
Tensor
types includingint, float, string, bool
in theinput_spec
argument of@to_static
. (#33464) - Fix a number of known problems with the transcription of dynamic to static syntax. (#33963)
Custom OP
- C++ version check upgrade from C++11 to C++14 during Custom OP compile. (#30415)
Inference Deployment
Paddle Inference
bugfix
- Fix wrong calculation result of ERNIE model when
batch_size > 1
. (#33784) - Fix the crash caused by splitting
TensortRT
inference path with right slash under windows.(#33885) - Fix MKLDNN
elementwise
series OP's X does not support broadcast .(#33845)
Environment adaptation
Compile and install
- Restrict the version range of dependent Gast libraries (
gast>=0.3.3, <=0.4.0
). (#33850) - Optimize
Avx/No-Avx
related installation error messages, reduce redundant Warning messages. (#33885)
New Hardware Adaptation
Kunlun hardware training support
- Modify the
cmake
file of Kunlun to unify and update its operator library.(#34000)
Thanks to our Contributors
This release contains contributions from:
0x45f、Aurelius84、Chen Weihang、chentianyu03、HexToString、iducn、Jacek Czaja、Kaipeng Deng、Leo Chen、lzzyzlbb、Peihan、taixiurong、tianshuo78520a、WeiXin、wenbin、Wilber、wuhuachaocoding、xiongkun、Zhou Wei、 winter-wang .