v4
版本发布时间: 2019-04-01 02:36:03
ultralytics/yolov3最新发布版本:v9.6.0(2021-11-15 05:26:56)
This release requires PyTorch >= v1.0.0 to function properly. Please install the latest version from https://github.com/pytorch/pytorch/releases
Breaking Changes
There are no breaking changes in this release.
Bug Fixes
- Multi GPU support is now working correctly https://github.com/ultralytics/yolov3/issues/21.
-
test.py
now natively outputs the same results as pycocotools to within 1% under most circumstances https://github.com/ultralytics/yolov3/issues/2
Added Functionality
- Dataloader is now multithread. https://github.com/ultralytics/yolov3/issues/141
- mAP improved by smarter NMS. mAP now exceeds darknet mAP by a small amount in all image sizes 320-608.
ultralytics/yolov3 with pycocotools |
darknet/yolov3 | |
---|---|---|
YOLOv3-320 | 51.8 | 51.5 |
YOLOv3-416 | 55.4 | 55.3 |
YOLOv3-608 | 58.2 | 57.9 |
sudo rm -rf yolov3 && git clone https://github.com/ultralytics/yolov3
# bash yolov3/data/get_coco_dataset.sh
sudo rm -rf cocoapi && git clone https://github.com/cocodataset/cocoapi && cd cocoapi/PythonAPI && make && cd ../.. && cp -r cocoapi/PythonAPI/pycocotools yolov3
cd yolov3
python3 test.py --save-json --conf-thres 0.001 --img-size 416
Namespace(batch_size=32, cfg='cfg/yolov3.cfg', conf_thres=0.001, data_cfg='cfg/coco.data', img_size=416, iou_thres=0.5, nms_thres=0.5, save_json=True, weights='weights/yolov3.weights')
Using cuda _CudaDeviceProperties(name='Tesla V100-SXM2-16GB', major=7, minor=0, total_memory=16130MB, multi_processor_count=80)
Image Total P R mAP
Calculating mAP: 100%|█████████████████████████████████| 157/157 [08:34<00:00, 2.53s/it]
5000 5000 0.0896 0.756 0.555
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.312
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.554
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.317
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.145
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.343
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.452
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.268
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.411
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.435
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.244
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.477
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.587
python3 test.py --save-json --conf-thres 0.001 --img-size 608 --batch-size 16
Namespace(batch_size=16, cfg='cfg/yolov3.cfg', conf_thres=0.001, data_cfg='cfg/coco.data', img_size=608, iou_thres=0.5, nms_thres=0.5, save_json=True, weights='weights/yolov3.weights')
Using cuda _CudaDeviceProperties(name='Tesla V100-SXM2-16GB', major=7, minor=0, total_memory=16130MB, multi_processor_count=80)
Image Total P R mAP
Calculating mAP: 100%|█████████████████████████████████| 313/313 [08:54<00:00, 1.55s/it]
5000 5000 0.0966 0.786 0.579
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.331
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.582
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.344
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.198
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.362
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.427
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.281
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.437
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.463
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.309
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.494
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.577
Performance
- mAP computation is much slower now than before using default settings, as
--conf-thres 0.001
captures many boxes that all must be passed through NMS. On a V100 test.py runs in about 8 minutes - Training speed is improved substantially compared to v3.0 due to the addition of the multithreaded PyTorch dataloader.
https://cloud.google.com/deep-learning-vm/
Machine type: n1-standard-8 (8 vCPUs, 30 GB memory)
CPU platform: Intel Skylake
GPUs: K80 ($0.198/hr), P4 ($0.279/hr), T4 ($0.353/hr), P100 ($0.493/hr), V100 ($0.803/hr)
HDD: 100 GB SSD
Dataset: COCO train 2014
GPUs | batch_size |
batch time | epoch time | epoch cost |
---|---|---|---|---|
(images) | (s/batch) | |||
1 K80 | 16 | 1.43s | 175min | $0.58 |
1 P4 | 8 | 0.51s | 125min | $0.58 |
1 T4 | 16 | 0.78s | 94min | $0.55 |
1 P100 | 16 | 0.39s | 48min | $0.39 |
2 P100 | 32 | 0.48s | 29min | $0.47 |
4 P100 | 64 | 0.65s | 20min | $0.65 |
1 V100 | 16 | 0.25s | 31min | $0.41 |
2 V100 | 32 | 0.29s | 18min | $0.48 |
4 V100 | 64 | 0.41s | 13min | $0.70 |
8 V100 | 128 | 0.49s | 7min | $0.80 |
TODO (help and PR's welcome!)
- Video Inference. Pass a video file to detect.py.
- YAPF linting (including possible wrap to PEP8 79 character-line standard) https://github.com/ultralytics/yolov3/issues/88.
- Add iOS App inference to photos and videos in Camera Roll.
- Add parameter to switch between 'darknet' and 'power' wh methods. https://github.com/ultralytics/yolov3/issues/168
- Hyperparameter search for loss function constants.